Vidya Pratishthan's Kamalnayan Bajaj Institute of Engineering and Technology, Baramati.

(An Autonomous Institute)

Faculty of Science and Technology

Board of Studies

Mechanical Engineering

Syllabus

Double Minor with Specialization in Digital Manufacturing & Robotics

(Pattern 2023) (w.e.f. AY: 2024-25)

Syllabus: Double Minor with specialization in Digital Manufacturing & Robotics (Pattern 2023) w.e.f. AY:2024-2025

Course Code	Courses Name	Teaching Scheme			Examination Scheme and Marks						Credits				
		тн	PR	TUT	ACT	ISE	ESE	TW	PR	OR	Total	тн	PR	TUT	Total
ME23261	3D Modeling & Drafting	2	2	-	10	20	50	20	20	-	120	2	1	-	3
ME23271	Principle of Robotics	• 2	· 2	-	20	20	50	20	20	-	130	2	1	-	3
ME23361	Digital Manufacturing	3	2	•	20	20	70	20	20	-	150	3	1	-	4
ME23371	Control System	3	2	-	20	20	70	20	20	-	150	3	1	-	4
ME23461	Smart Manufacturing	3	2	6 2	20	20	70	20	20	-	150	3	1	-	4
	Total	13	10	82	90	100	310	100	100	-	700	13	5	-	18

Dept. Academic Coordinator Mr. S. C. Mahadik

Head of Department Dr. M. S. Lande

Dean Academic Dr. S. M. Bhosle

Principal Dr. R. S. Bichkar

Head

Department of Mechanical Engineering VPKBIET Baramati - 413133

ME23261:- 3D Modeling & Drafting								
Teaching Scheme:	Credits:03	Examination Scheme:						
		Course Activity: - 10 Marks						
TH: 02 Hrs/Week		In-Semester Exam: 20 Marks						
	Theory : 02 Practical : 01	End-Semester Exam: 50 Mark						
PR: 02 Hrs/Week		PR Exam: - 20 Marks						
,		Term-Work: 20 Marks						

Prerequisites: Engineering Graphics.

Objectives:

- 1. Familiarize students with the interface and basic tools of solid modeling software (e.g., SolidWorks, AutoCAD and CATIA).
- 2. Enable students to create detailed 3D models of mechanical parts from technical drawings.
- 3. Teach students to assemble individual parts into a complete mechanical assembly.
- 4. Introduce students to advanced modeling techniques such as surfacing.

Course Outcomes:

modeling.

The students will be able to learn:

CO1: Demonstrate the ability to use solid modeling software to create accurate 3D models of mechanical components.

CO2: Interpret and convert technical drawings into 3D models for engineering applications.

CO3: Apply principles of geometric modeling to develop detailed parts and assemblies

CO4: Utilize advanced features and tools of solid modeling software to enhance and optimize designs.

Course Contents

Unit-1: Introduction	[06 Hrs.]
Introduction the evolution of CAD the importance of CAD in the light of allied to	chnologios
introduction – the evolution of CAD, the importance of CAD in the light of amed te	cilliologies,
Product Life Cycle, CAD tools in the design process of Product Cycle, Computer-Aid	led Design -
Features, requirements, and applications 3D Modeling approach - Types of Geomet	ric models -
extrusions, axisymmetric, 3D objects, the difference between wireframe, surfa	ace & solid

Methods of defining Point, Line and Circle, Curve representation - Cartesian and Parametric space, Analytical and Synthetic curves, Parametric equation of line, circle, ellipse.

Synthetic Curves - Hermit Cubic Spline, Bezier, B-Spline Curve,

Surfaces: Surface representation, Types of Surfaces, Bezier, B-Spline, NURBS Surface, Coons patch surface, Surface Modeling.

Unit-3: Solid Modeling and Assembly

Introduction, Geometry, and Topology, Solid entities, Solid representation, Fundamentals of Solid modeling, Boundary representation (B-Rep), Constructive Solid Geometry (CSG), Sweep representation, Analytical solid modeling, Parametric solid modeling, feature-based modeling, Introduction to Assembly Modeling, Assemblies (Top-down and Bottom-up approach).

Unit-4: Geometric Transformation

Introduction, Geometric Transformations, Translation, Scaling, Rotation, Reflection/Mirror, Shear, Homogeneous Transformation, Inverse Transformation, Concatenated Transformation (limited to 2D objects with maximum 3 points only), Coordinate systems - Model (MCS), Working (WCS), Screen (SCS) coordinate system, Mapping of coordinate systems.

Text Books:

- 1. Zeid, I and Sivasubramania, R., (2009), "CAD/CAM : Theory and Practice", 2nd edition, McGraw Hill Education, ISBN-13: 978-0070151345
- 2. Rao, P. N., (2017), "CAD/CAM: Principles and Applications", 3rd edition, McGraw Hill Education, ISBN-13: 978-0070681934.

Reference Books:

1. Ostrowsky, O., Engineering Drawing with CAD Applications, ELBS, 1995

2. Vukašinovic, Nikola and Duhovnik, Jože, (2019), "Advanced CAD Modeling: Explicit, Parametric, Free-Form CAD and Re-engineering", Springer, ISBN-13: 978-3030023980

3. Hearn, D. D. and Baker, M. P., (2013), "Computer Graphics with OpenGL", 4th edition, Pearson Education India, ISBN-13: 978-9332518711

4. Bucalo, Joe and Bucalo, Neil, (2007), "Customizing SolidWorks for Greater Productivity", Sheet Metal Guy, LLC, ISBN-13: 978-0979566608

5. Programming Manuals of Softwares.

[06 Hrs.]

[06 Hrs.]

Guidelines for Lab /TW Assessment (All Practical's are compulsory)

1. Introduction to Solid Modeling Software:

- a. Familiarization with the software interface.
- b. Basic commands and tools.
- c. Creating simple geometric shapes.

2. Creating 3D Models from Technical Drawings:

- a. Converting 2D sketches into 3D models.
- b. Applying dimensions and constraints.
- c. Editing and modifying models.

3. Assembly Modeling:

- a. Importing and assembling individual parts.
- b. Applying mates and constraints.
- c. Checking for interferences and alignments.

4. Advanced Modeling Techniques:

a. Introduction to surfacing and creating simple shapes.

5. Technical Drawing and Documentation:

- a. Generating 2D technical drawings from 3D models.
- b. Adding annotations, dimensions, and tolerances.

Guidelines for Activity:

Mini Project: Applying all learned techniques to design a mechanical component or assembly.